Structural Characterization of Atomically Thin Hexagonal Boron Nitride via Raman Spectroscopy Thesis

نویسندگان

  • J. Matthew Bondy
  • Elizabeth A. Moore
چکیده

A non-destruction evaluation of atomically thin hexagonal boron nitride (h-BN) films is critical to the U.S. Air Force and Department of Defense initiatives pursuing graphene-based electronic field effect transistors (FETs) capable of operating at terahertz frequencies. H-BN thin films an increase to the characteristic E2g 1367cm -1 h-BN peak intensity has been correlated to an increase in film thickness. Raman spectroscopy on a h-BN film with thicknesses of 7, 14, and 21 atoms (2.5nm, 5nm, 7.5nm respectively) revealed a linear relationship between peak intensity and thickness. This relationship can mathematically be described as and fits the data with a R value of 0.9986. There was no observed correlation between film thickness and full width at half maximum (FWHM) and there was no measured shift to the E2g peak with increasing film thickness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition.

Hexagonal boron nitrite (h-BN) is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers....

متن کامل

Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates.

We present the temperature-dependent carrier mobility of atomically thin MoS2 field-effect transistors on crystalline hexagonal boron nitride (h-BN) and SiO2 substrates. Our results reveal distinct weak temperature dependence of the MoS2 devices on h-BN substrates. The room temperature mobility enhancement and reduced interface trap density of the single and bilayer MoS2 devices on h-BN substra...

متن کامل

Shot noise detection in hBN-based tunnel junctions

High quality Au/hBN/Au tunnel devices are fabricated using transferred atomically thin hexagonal boron nitride as the tunneling barrier. All tunnel junctions show tunneling resistance on the order of several kΩ/μm. Ohmic I-V curves at small bias with no signs of resonances indicate the sparsity of defects. Tunneling current shot noise is measured in these devices, and the excess shot noise show...

متن کامل

Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy.

Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but...

متن کامل

Synthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler

Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014